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Abstract. A theoretical study of the positronium state in alkaJi halide crystals is presented 
using the extended-ion approach adapted for two-particle systems. For both the electron and the 
positron, floating Is Gaussian fundions were used as the basis. The energies of the Bloch-like 
free state at L = 0 and of a self-trapped positronium state localized at an interstitial site were 
calculated. Lattice relaxation and polarization were included in the self-trapapped state. It is found 
that both the free and self-trapped states have very close energies, separated by less than 0.2 eV, 
and the self-trapped state has a quite extended wavefunction. calculated angular eonelation 
curve of two y annihilations is in fair agreement with the experimental result for KCI. The 
calculated two-photon decay lifetime is longer than the experimental value by about an order 
of magnitude, and it is amibuted to the Gaussian basis functions that are used. In the angular 
correlation curve of the free posimnium wte. a series of weak satellite pealrs that ceflect the 
periodic symmetry of the Bloch state were observed experimentally, i.e. in KI and NaI, with some 
of the peaks vanishingly small (crystallographic effect). This effeet is beautifully reproduced in 
this work. It can be interpreted to be due to the positronium bemz unable to distinguish the 
d o n s  f" the anions, and as a muIt the NaCl struenue is seen as a simple-cubic stroctwe 
by the free positronium. 

1. Introduction 

The study of the positronium Cps) iri alkali halides has a history of more than 30 years. 
In 1956 Ferrell [l] predicted that the bound pair of a positron and an electron would not 
be stable in the perfect alkali halide crystals. The experiment at room temperature of 
Stewart and Pope [Z]. in which no narrow peak Ips peak) was observed in the angular 
correlation curves (ACC) of alkali chlorides and sodium halides, seemed to support this 
argument. Later, Bisi et a1 [3,4] measured positron lifetime spectra for some alkali halides 
and obtained results that suggested the formation of a Ps or Ps-like state in the specimen. 
On the other hand, Herlach [SI showed by comparing the data with and without a magnetic 
field that a narrow component was in fact contained in the apparently smooth ACC of KCl. 
Following this observation, Dannefaer and Smedskjaer [6,7] made multiplecomponent 
parameter fittings to the ACC of NaCl and KCl and were able to correlate their narrowest 
component with the decay of the singlet Ps. 

In the early 1970s [8-12], a great deal of experimental work was conducted to study 
positron annhilation in alkali halides with substantial concentrations of F centres. The 
significant change in the angular distribution of two-photon annihilation was found and 
attributed to annihilation of positrons trapped by F centres. Positron annihilation associated 
with various types of vacancies was studied actively during that period of time. 

The research in this area has been enhanced after Hyodo and Takakusa [13] discovered 
that Ps does exist in a delocalized state in NaF and NaCl at low temperatures. The evidence 
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for delocalized Ps was provided by angular correlation measurements with very narrow 
peaks in the momentum distribution of the annihilation photon pair at sufficiently low 
temperature; such narrowness results only when the wavefunction of the Ps is extended 
over the crystal as a Bloch wave. Similar studies have shown that delocalized Ps is formed 
also in several other alkali halides such as KBr [13], KI [14], NaI [14], RbCl [IS] and KCI 
[16]. It has been shown that above a characteristic temperature the narrow para-Ps peak 
in the angular correlation curve broadens drastically. This broadening was interpreted as 
indicating the localization of Ps in a metastable, self-trapped state [17]. Therefore the Ps 
atom may reside in either a delocalized or a localized state, with the energy level of the 
localized state assumed to lie higher than the bottom of the delocalized Bloch band. At low 
temperature, Ps will be mainly in the delocalized state but will, with rising temperature, start 
to populate the locdized states. This effect has been attributed to a temperature-induced 
transition of the Ps to a self-trapped state. 

Generally speaking, the progress in experimental research in this area has been quite 
impressive, well ahead of theoretical studies. There have been very few theoretical works 
involving detailed calculation on Bloch-state Ps and metastable self-happed Ps. We have 
adapted an earlier successful version of the extended-ion method, based on the use of 
floating Gaussian orbitals (FGO) as the basis functions [U], to study the defect systems 
with two electrons such as the F' centres in alkali halides [IS] (this paper is referred to 
as I hereafter). For systems involving a positron and an electron, certain modifications 
to the method discussed in I have been made. The two-particle system is described by a 
linear combination of product functions, each part representing one particle. The single- 
particle basis is made exclusively of FGO in which the Gaussian damping constant as well 
as the position are varied. As we noted in I, this type of basis incorporates some degree 
of electron-positron correlation from the start. The electron-positron correlation is an 
essential character of the systems being studied in this work. The use of an FGO basis 
allows an efficient evaluation of various terms in the single-particle Hartree-Fock equation. 
However, as will be discussed below, the relative and the centre-of-mass (CM) parts of the 
Ps wavefunction are not independently optimized in the variational solution of the problem. 

In this paper we present the work on several Ps-related systems in NaF, NaCl and KCI 
at 0 K and room temperature. Using a method specially adapted for Ps from that used 
in I, we have studied the structure of the Bloch-like free Ps and the self-trapped Ps state 
centred on an interstitial site and compared their energies. We found that their energies 
are rather close, in qualitative agreement with the report of Hyodo et al [17]. We have 
also calculated the lifetimes and angular correlation curves (Acc) of two-photon decay of 
the Ps. The calculated lifetimes are found to be about one order of magnitude larger than 
those obtained experimentally for both delocalized and localized Ps. We attribute this to 
the particular form of the Gaussian basis that we have chosen to use. 

The ACc calculated in this work are compared with those obtained experimentally for 
the self-trapped Ps. We found good agreement with experimental data when the centre- 
of-mass (CM) motion was allowed to spread out over many unit cells by means of an 
envelope function (which was determined from energy minimization). A basis localized 
on a single interstitial site gave a broad ACC in poor agreement with the experiment, and 
also resulted in a shong lattice relaxation. Regarding the ACC of the free Ps, Kasai and 
Fujiwara [I41 have found an interesting crystalIographic effect in KI and NaI. The satellite 
pcaks corresponding to pi = nh/a (a is the lattice constant and n me odd integers) are 
vanishingly small compared with those for even n. The Ps behaves as if the NaCl lattice 
were reduced to one of simple-cubic skucture with half the original lattice constant. This 
effect is analogous to the disappearing diffraction peaks in the x-ray diffraction in KC1 
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[ZOl. We have obtained a very good account of this effect in NaF, NaCl and KCI in this 
study. Our study confirms the interpretation given by Kasai and Fujiwara. We have also 
obtained reasonable results for  the^ intensity ratio of the first satellite pealc (p ,  = 2h/a) to 
the central peak. The Ps trapped at an anion vacancy (Fe+ centre) is also studied, which 
yielded reasonable lifetimes and ACC. 

This paper is organized as follows. In section 2, we describe the method, referring to 
I for the common parts. In section 3, the results of the self-trapped and free Ps states are 
given in detail. A brief account for the Fe+ centre follows. 

2. Method of calculation 

Basically, the defect systems under study are composed of two particles. In the approach 
we have developed, the two-particle basis functions are represented by a product of two 
single-particle floating Gaussian orbitals. 

As mentioned before, we are going to study several distinct systems in this work. 
Obviously, they have quite different electronic structures from one another, and hence their 
Hartree-Fock Hamiltonians will be described separately. 

2.1. Electronic energy calculation 

2.1.1. Bloch-like positronium state. Here we propose a way to calculate the Bloch state 
of the Ps. It turns out that the approach with floating 1s Gaussian basis has a significant 
potential even in an energy band calculation 1211. 

Since the interaction of a correlated Ps with a periodic lattice is invariant under 
translation by a lattice vector, the total crystal momentum of the Ps is a good quantum 
number to label the eigenstates of the system and the corresponding energy eigenvalues. 

We formulate a Blwh function for the Ps that satisfies the Bloch theorem: 

@(T+ + d ,  r- + d) = eik.d@(r+, T-) (1) 

for an arbitrary lattice vector d. Here, T+ and T- represent the positions of positron and 
electron respectively. Thus the wavefunction can be constructed from the Bloch sum of the 
following form: 

x G(T+ - L)  (2) 

where N is the number of unit cells, Gj the floating Gaussian, k the Bloch-state positronium 
wavevector, L the atomic site, and X A , ~ ( ~ - )  a core orbital h centred at m. The floating 
sph~erically symmetric Gaussian basis has been described in I, and some of the important 
properties are shown in the appendix. Summation over J;  runs over all unit cells. We note 
that the electron part has been explicitly orthogonalized to occupied core states as in I, but 
the positron part has not. It can he shown that equation (2) satisfies the Bloch theorem. 

We are interested in the behaviour of the delocalized Ps state at the centre of the Brillouin 
zone, so the wavevector k can be simply taken to be zero. Hereafter GT = Gi(r+) .  The 
Bloch wavefunction (2) yields the Hamiltonian matrix element, which can be written as 
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where the first term is a standard singleelectron Hamiltonian, the second term represents a 
single-positron Hamiltonian, which has similar form to the first one except for the missing 
exchange interaction, and the thud represents the interaction between the two particles. 
More explicitly, they are 
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+ EA,,m,(G;IXn,.m,)(X~,mlGr)(xn,.m,IXn,m+L)(G+IG:(L)). (4) 
A.A',L,m.m' 

Here is the core energy. As a result of the translational symmetry, one of the 
summations over L cancels 1/N. The orthogonality of different core orbitals reduces 
the multiple summations in the last term of (4), and cancels the second term. Then equation 
(4) simplifies to 

H- LJ = C(G;IH-IG;(L))(G+IG~C(L)) 
L 

Following the same procedure, we have the matrix element for the positron Hamiltonian: 

4; = (G;I G; (L)) (G:IH+~G;(L)) 
L 

- (G; 1XA.m) ( X A . m  IGy(L)) {G?IH'IGjf(L)). (6) 
L . A m  

The mahix element of the interaction Hamiltonian has a complicated form: 
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The overlap matrix element is 

We have derived the general expressions for various matrix elements. The details of 
the calculation of the above equation are given in I, in onr study of the F’ centres. 

The most complicated terms are seen in (7), which represent the electron-positron 
interaction. Because the positron wavefunction has not been orthogonalized, there is 
considerable simplification compared to the F’ centre, described in I. The various term 
involving H+- are evaluated as explained in I. 

The calculation of the total overlap matrix element (8) is much simpler. The energies 
and the eigenfunctions are obtained by solving the secular determinant 

lHjj -ESi j l  = O .  (9) 

In a non-relativistic approach, the energy levels are degenerate with regard to the spin 
and angular momentum states. In the RussellSaunders coupling, each RussellSaunders 
eigenstate is an eigenstate of the charge conjugation operator, belonging to the eigenvalue 
(-l)[+$. For a spherically symmetric state ( I  = 0), then we have singlet state (-1)”& and 
triplet state (-ly=’. As our Hamiltonian does not contain the spin explicitly, we do not 
need to give spin explicitly in our wavefunction. The diagonalization of the Hamiltonian 
results in symmetrized space wavefunctions, which take care of the singlet and triplet space 
states automatically. The space symmetric state corresponds to the spin singlet state and 
the space antisymmetric state to the spin triplet state. 

2.1.2. The self-trappedpositronium state. As mentioned in the introduction, Ps could be 
self-trapped at an interstitial site in a perfect crystal above a certain temperature. There is 
a lattice relaxation around the trapped site that stabilizes the system. 

In a preliminary study, we first studied a strongly localized system. It resulted in a fairly 
tight system with a substantial lattice expansion (- 16% and 8% for cation and anion of 
the first neighbour atom of NaC1). This also gave an ACC that was found to be too broadly 
distributed compared to the experimental data 1161. We interpreted this to be related to the 
type of basis function we used. The product of two Gaussians, one for each particle, can be 
transformed such that the coordinates of the CM and the coordinates of the relative motion 
of the two particles are explicitly shown (appendix). The difficulty with this type of basis 
is that it is not possible to have variational freedom for both the CM and relative motion of 
the Ps at the same time. We concluded that, as the relative motion is optimized, there must 
be a separate control over the CM part. 

Now we describe this approach in detail. The idea is similar to that which describes the 
exciton wave packet with an envelope function 1221, and the wavefunction of the system 
can be written as 

@(T+,T-) = X C i  Xexp(-aRR’)@j((T+ -R.)@~(T- -22). (10) 
i R 

Here R represents the position of the unit cell, and the summation over R runs over all 
unit cells. As we can see, a Gaussian envelope function is proposed. In other words, the 
envelope function allows the cM of the Ps to spread over like a wave packet and the decay 
parameter is determined through energy minimization. 
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Finally the Hamiltonian matrix element for this system can be expressed as 

F(R)@i(r+ - R)@i(r- - R) H F(R')@j(r+ - R')4j(r- -IC)) I 
= F(R')F(R)(@z(T+ - R)&(T- - R ) l H l @ j ( ~ +  - R')&(T- - R')). 
R.R' 

(1 1) 

The total overlap matrix element is 

Sjj = F(R')F(R)(@j(r+ - R)@~(T- - R)lbj(~+ - R')@j(r- - R')). (12) 
R.K 

The Gaussian-type envelope function represents no further difficulty in calculation. 

2.1.3. Fe+ cerure. For this system, the defect is composed of an anion vacancy plus an 
electron-positron pair. We investigated this system by following the above procedure. The 
wavefunction can be simply taken from equation (2) with L = 0. The Hamiltonian follows 
from equations (3)-(7), except that there is a missing anion in the point-ion potential. 

2.2. Lattice energy 

The lattice energy includes the Coulomb energy between point ions, short-range repulsive 
energy and polarization energy. It is known that an intrinsic Ps state exhibits a temperature 
effect. We have considered the self-trapped and free Ps states at 0 K and room temperature 
(300 K) by refitting the Born-Mayer pair potential to these temperatures. 

Polarization effects depend very much on the defect charge. Its calculation is subject to 
various approximations. In our approach, we adopt the Matt-Littleton method to estimate 
the polarization effect. Systems such as the Ps self-trapped at an interstice are charge- 
neutral defects, and the polarization effects turn out to be quite small. Their calculations 
are therefore similar to that of an F centre while the charged defect of Fe+ centre is treated 
in the same way as the F' centre. For details refer to I. 

The Bloch-like state of the Ps behaves in a slightly different way because of the 
translational symmetry. Polarization effects are to be treated also based on the lowest- 
order Moa-Littleton metbod. 

2.3. Lifetime calculation 

Information on the behaviour of the positron in solids is transmitted exclusively by the 
annihilation radiation. The expression of the lifetime 5 is given by 

@*(T-, T+)S(T- - r+)@(r-, T+) dr- dr+. (13) 

Here (Y is the fine-structure constant. Depending on the wavefunctions of the various system 
studied, it yields the lifetime. Taking the example of a localized Ps state, it becomes 

5 
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( 14) 

The fist term on the right represents the zeroth-order approximation to the rate and 
its calculation is straightforward. The remaining terms represent the corrections from 
consideration of the core effects. We assume that the compact deep core orbitals are less 
important than outer s and p shells in lifetime, and thereby we avoid treating complicated 
deep core contributions. We tried an indirect way to see the impact of deep cores on the 
lifetime. The outer s and p shells are fitted into Gaussians in our approach. The interpolated 
decay parameters of the Gaussians were made 10 times larger, or, in other words, the diffuse 
outer shells were made artificially compact, so that they behave somewhat like deep cores. 
The lifetime was recalculated by using such 'deep cores' and it was found that the lifetime 
varied by about 1 %. Therefore, we decided to drop the contributions of the deep cores in 
(14). The second and the third terms are relatively simple, because the three Gaussians 
can be contracted into a single Gaussian and x are either s orbital or p orbitals. The 
interpolation scheme is applied here to calculate the ion-size correction on the lifetime. The 
last term involves two cores, which can be at different sites. We assume those interpolation 
formulae are still valid and replace the cores by fitted Gaussians. We need to work out all 
configurations regarding the different orbitals and then sum them up. Generally, this term is 
smaller, and as the distance between the two cores increases it decreases fast. For Ps in the 
Bloch state we consider only the floating Gaussian part'in the wavefunction to calculate the 
rate approximately, which means all influences~ on lifetime from core orbitals are ignored. 

2.4. Angular correlation calculation 

The angular distribution of two-photon annihilation N ( 8 )  is the experiientally measured 
quantity. Here, 0 is a small angle (of the order of milliradian) and represents the angular 
deviation of the two y quanta from 180". The deviation from 180" represents the effect of 
linear momentnm that the Ps has at the time of self-annihilation. We first have to calculate 
the momentum density P@) of the Ps: 

S(T- - r+)@(r-, T+) dr- dr+  = e'P'@(r, r )  d r  = (15) P(P) = 1 S eiP.7 

where a@) is the Fourier transform of the wavefunction @(T, T). The one-dimensional 
angular momentum correlation is defined as (in atomic units): 

12 I S '  12 
N ( 6 )  = P(P,, Py, P, = e/or)dp,dp, (16) 

where pi = cB = 8/a and or = l / c  is the fine-structure constant. For localized-state Ps and 
Bloch-state Ps, neglecting the contribution of the core orbitals through orthogonalization, 
the evaluation of (16) involves only the floating Gaussians and is straightforward. 

s 
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3. ResuIts and discussion 

In this section, we present results and discussions for each of the systems separately. 

3.1. The Bloch-like positronium state 

Previously in section 2.1.1, we have described how to represent the delocalized Bloch-like 
Ps state. W e  have studied two main aspects of the Bloch-like Ps state. One is the relative 
stability of the delocalized state compared with that of the localized self-trapped state to 
be presented in section 3.2. This is done by evaluating the Bloch-like Ps state energy at 
the bottom of the Ps band, IC = 0, at two temperatures, 0 and 300 K. The other is the 
so-called crystallographic effect observed by Kasai and Fujiwara [I41 in the satellite peaks 
of the ACC. The self-annihilation of Ps from a Bloch state is identified by a series of narrow 
peaks appearing on the ACC, the positions of which correspond to the projections of the 
reciprocal lattice vectors onto the scanning direction. Kasai and Fujiwara have noted that 
the peaks corresponding to the reciprocal lattice points of odd indices are anomalously 
weak, as reproduced in figure 1. This implies that the Ps atom is moving in the crystal 
without distinguishing the anion from the cation, and therefore experiences the periodicity 
of a simple-cubic lattice of lattice constant a / 2  rather than a face-centred-cubic lattice of 
lattice constant a. 

C G Zhang and K S Song 

f ....ji.-'. 
-10 -5 

- h .  NaI 1 .  

Figum 1. The angular correlation of two gamma rays 
from positrons annihilating in single crystals of KI and 
Nal oriented nearly along the (1,0,0) direction. Note 
the anomalously weak intensities of the first satellite 
peaks. Resolution: 0.178mc x Horizontal axis 
represents momentum in mcx IO-3 .  The figure is from 
Kasai and Fujiwara [14], reproduced with permission. 

2f . ;i** 1 ~ , 

. .-* 
-10 -5 0 

momentum in mc x 10 

3.1.1. Energy of the free positrohium state. There are two interstitial sites In one unit cell, 
i.e. (1/2,1/2, 1/21 and (lj2, l/2, -1/2) in units of anion-cation distance. If we place the 
basis only at one of them, we are assuming that the Ps atoms can distinguish the anion 
and cation, and experience the periodicity of an FCC lattice. If we want to examine the 
crystallographic effect, we have to adopt the hypothesis proposed by Kasai and Fujiwara 
[14], and consider the other equivalent site of the unit cell also. The pair basis (PB) has to 
be employed, with equivalent basis placed on the two sites just described. Our use of the 
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floating Gaussian basis makes this very convenient. One pair of the on-centre basis (that is 
to say, both particles are centred on the interstitial site) is used and the calculated energies 
are presented in table 1. It is interesting to note that the energies evaluated with the pair 
basis are slightly lower than those with the single basis (SB). Energy calculation of a Bloch 
state involves lattice sums, as shown in equation (7), and takes a considerable amount of 
computer time. For this reason, a maximum of two Bloch bases was used throughout. For 
a meaningful comparison of relative energy difference between the free and self-trapped Ps 
states, we also employed a similar quality basis in our study of the self-trapped state. The 
energies of free and self-trapped states are compared below in section 3.2.1. 

Table 1. Calculated lowest energy levels (al both 0 and 300 K) and lifetimes (aI 0 K) of the 
delocalized-state Ps. EBM, represene the Bloch-state Ps energy. SB and PB are abbreviations 
of single basis and pair basis. r and cXp represent the calculated and experimental lifetimes. 

NaF NaCl KCI T IKI 

E B I C ~ S E )  (em 8.77 2.43 0.97 300 
E B ~ P B )  (ev) 7.64 2.30 0.91 300 
EBloch(SB) (ev) 8.95 2.61 1.09 0 
EBloch(PB) (ev) 8.03 2.47 1.04 0 

(ns) 0.95 1.64 1.80 0 
rcxo (ns) 0.083 1231 0.087 1231 0 

3.1.2. Positronium lifetime and angular correlation. The lifetimes evaluated from our model 
(presented in table 1) are more than 10 times larger than the observed values. Our lifetime 
calculation is generally unsatisfactory and it is believed to be related to the form of the 
basis functions used. A detailed discussion on this matter will be given in section 3.2.2, 
together with the case of the self-trapped Ps. In terms of the angular correlation, what can 
be observed from Bloch-state Ps are the central peak and a few satellite peaks corresponding 
to the projections of reciprocal lattice vectors onto the scanning directions. For one- 
dimensional angular correlation, the projection of an arbitrary reciprocal lattice vector g 
on the z direction, g,, determines the positions of those peaks; g, = 0, &I, f 2 ,  . . . , (Znfa) 
correspond to the central peak, fust satellite, second satellite, and so on. Actually, they 
reflect the periodicity of the lattice. To examine the interesting crystallographic effect, we 
can demonstrate this effect through our calculation of angular correlation. We use the pB to 
calculate those peaks. 

It is seen from table 2 that, when the PB are used, the statellite peaks corresponding 
to odd-index g, are dramatically reduced to practically zero. It implies that the Ps atoms 
seem not to see the difference between the anion and cation, and move like they are in 
the simple-cubic lattice with half the period of the original FCC lattice. This is the first 
theoretical proof of the observed crystallographic effect. 

In Kasai and Fujiwara’s experiment [14], they also reported the ratio between the central 
peak and the first satellite peak of reciprocal lattice vector of the simple-cubic lattice for KI 
being ~15/1 (see figure 1). Our calculated ratios for NaF, NaCl and KCI are 14.411. 12.311 
and 8.611, respectively. As can be seen, they fit observations quite well. 

3.2. The positronium selftrapped at an interstice 

3.2.1. As we described in the method 
in section 2.1.2, the best result regarding the ACC was obtained when a flexible CM 

Lattice relaxation and ground-state energy. 



9182 C G Zhang and K S Song 

Table 2. Cdculued @ heights of the two gamma decay angular correlation curve (at 0 K) 
for the Bloch-state Ps. SB and PB are abbreviations for single basis and pair basis (see text for 
detail). gz represents the projections of reeipracal lattice vector on L direction. 

gz(n2nJa) = 0 1 2 3 

N a F N  (PB) 2.02 0 0.14 0 
NaCl N (SB) 1.17 0.45 0.09 0.001 
N a C l N ( m )  2.09 0 0.17 0 
KCI N (SB) 1.24 0.60 0.14 0.09 
KCI N (PB) 2.32 0 0.27 0 
K1 WP.) 1.00 20 0.067 [I41 20 

, ,  , ,  

N ~ F N ( s B )  1.15 0.43 0.09 o.bd2 

wavefunction was devised. Without this device, the centre of mass of Ps turned out to be 
too restricted in space, leading to a much too broad ACC and substantial lattice relaxation. 
Therefore, we report here the result obtained with an envelope function that allows a separate 
variational degree of freedom to the CM. 

The extended CM envelope function is multiplied by the localized Ps wavefunction and 
is summed over unit cells (see equation (10)). The envelope function is represented by a 
Gaussian function that is centred at the central unit cell and its decay parameter is determined 
through energy optimization. In our calculation, it comes out to be 0.01 au. 

We also found that using a pair of Ps bases localized on two equivalent interstitial sites, 
(1/2,1/2,1/2) and (112,112, -112) in units of anion-cation distance, gives lower energy 
by about 0.1 eV (in NaCl and KC1) and 0.9 eV (in NaF). Table 3 shows results obtained 
with this pair of localized bases modulated by the envelope function. The lattice relaxation 
is about 0.1 A for the nearest-neighbour ions, and indicates an expansion. 

Table 3. Calculated lowest energy levels (at both 0 and 300 K) and lifetimes (at 0 K) of the 
localized-smte Ps. El, represents the localized-state Ps energy. SB and PB are abbreviations for 
single basis and pair basis. T (no core), r, (with core) and rcXp represent the calculated and 
experimental lifetimes. 

NaF NaCl KC1 T (K) 
~ , ,  ... ,,. , , , , , , 

E b b )  (eV) 8.77 2.47 0.99 300 ' " 

E ~ P E )  (eV) 7.85 2.32 0.84 300 
E&B) (eV) 9.10 2.67 1.13 0 
EI.,(PB) (eV) 8.20 2.59 1.11 0 
r (ns) 1.40 1.81 2.23 0 
rc (ns) 1.20 1.44 1.78 0 
rexp (ns) 0.091 1231 0.106 [23] 0 

3.2.2. Positronium lifetime and angular correlation. Hyodo and Stewart [23] proposed a 
model to deduce lifetimes of KCI and NaF for both localized and delocalized Ps based 
on their observations. Though there are some arguments on this model [24], we present 
their values for localized Ps in table 3. For both the free and self-trapped Ps, our calculated 
lifetimes are quite large compared to the experimental data (tables 1 and 3). As described in 
section 2.3, the lifetime is a quantity that depends on the value of wavefunction at r+ =,r- 
(zero of relative distance). The exponential function that describes correctly the relatlve 
motion of Ps has a cusp at r = 0, while a Gaussian does not. The behaviour of the relative 
coordinate wavefunction at the origin is an important factor in determining the lifetime [25]. 
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Although the product of two singleparticle Gaussians can be rewritten so that the CM and 
relative coordinates can be made explicit, as shown in the appendix, the two parts cannot 
be variationally optimized in an independent way. Using a large basis set can improve 
this situation. Because of the increasing computing time, the size of the basis set has been 
restricted to two for both the free and self-trapped Ps. As a result, the relative motion of 
the Ps is not fully optimized, contributing possibly to the poor lifetimes obtained. 

ACC are calculated by using the envelope-modulated wavefunction of equation (10). The 
ACC of KCl calculated are shown in figure 2 together with the experimental data obtained 
by Kasai and Hyodo [16]. We are only interested in the Ps self-annihilation, so the observed 
ACC in figure 2 is the Ps momentum distribution in KCI obtained by subtracting the broad 
component. There is a fairly good agreement between the two, which indicates that the 
self-trapped Ps has a fairly diffuse distribution as can be seen from the envelope Gaussian 
function with aR = 0.01 (in atomic units). 

Angular Correlation Curve 
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e (nuad) 
Figure 2. Angular correlation curves of lculized Ps 
at an infmice in KCI. Squares are experimental 
data from Kasai ei nl 1161. The broken c u m  is 
the theoretical calculation based on the non-envelope- 
modulated wavefunction, and the full curve is the 
theoretid calculation by using the envelope-modulated 
wavefunction. Curves are normalized such that N ( 0 )  = 
10 at 0 = 0. 

Angular Correlation Curve 

0 (nuad) 
Figurr 3. Angular correlation curve N ( B )  for two- 
photon annihilation from F centm in NaF. The curve 
shows the theoretical result using the large basis set (see 
fhe texf for details). Normali2ation of N ( 0 )  is made 
such that N ( 0 )  = 10 at 0 = 0. 

The parameter L, which was chosen as the quantity to measure the spatial extension 
of the CM of the self-trapped Ps, has been estimated by several authors before. Assuming 
that the Ps pair is represented by a Gaussian wave packet, its Fourier transform and angular 
momentum distribution can be derived. Through fitting the full width at half-maximum 
(Wm) of the momentum distribution, W t p ,  with observed data, the L value can be 
estimated [16,17] as L(A) = 10.7 x 10-3mc/W112, where m is the mass of an electron and c 
the speed of light. Hyodo, Kasai and Fujiwara [15,17] measured angular correlation curves 
of NaF, KC1 and some other alkali halides as well. Based on their experimental data and 
the above equation, they drew a conclusion &om their estimation of L that the localization 
length is of the order of the nearest anion-cation distance. For NaF and KCI, they got the 
values 3.2 A and 3.5 A, respectively. With decay factor 0.01 au of the extension of the CM, 
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the calculated L turns out to be 3.7 A, which fits well with those derived by Hyodo et al 
[15,17]. 

In the model proposed by Hyodo et ul [17], the Ps atom have two kinds of states, free 
and self-trapped, which are separated by an adiabatic potential barrier. They estimated the 
energy level of the self-trapped state to be about 0.1 eV above the bottom of the delocalized 
band 1171. It is seen from tables 1 and 3 that this energy difference is small (between 0.25 eV 
and zero). Because our calculation has an uncertainty of about 0.2 eV, we conclude that the 
energy level of self-trapped Ps state is very close to that of the Bloch Ps state. The present 
study is therefore in qualitative agreement with the experimental observations [16,17]. We 
have not attempted to determine the existence of the potential barrier between the two types 
of Ps states. According to the fundamental theory of self-trapping of an exciton (and also 
positronium by analogy), the existence of a potential barrier between the free and self- 
trapped states is well understood in three-dimensional systems [26]. It is especially hue 
because short-range interaction is dominant between exciton (and also positronium) and 
lattice. 

3.3. Fe+ centres 

3.3.1. Latrice relaxation and binding energy. This system is formed by an F centre trapping 
a positron. Both electron and positron are well localized at the anion vacancy. The vacancy 
itself has the symmetry of point group Oh. It is found that the lowest ground-state energy is 
obtained when the Gaussian parameters U- and a+ are identical for the two particles. The 
lattice is relaxed using first a single optimized basis, centred at the vacancy. In the process 
of energy minimization, ions surrounding the defect are moving outwards without breaking 
the Oh symmetry. Up to the fourth-shell ions are relaxed. 

The first nearest-neighbour ions are displaced (designated as D.. hereafter) quite an 
amount due to the shonger polarization effect from the extra charge at the vacancy. After 
the lattice relaxation is determined, we added the off-centre basis (basis placed around the 
defect along the three crystal axes) to improve the electronic energy. We need to optimize 
both decay parameters and the positions of the off-centre basis. Altogether, 16 floating 
Gaussians are used (four of on-centre type and two sets of off-centre type). 

Following previous workers, the binding energy of a positron to an F centre is defined 
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as [251 

Eb = E v )  - Eve') 

i.e. the energy difference between the ground-state F centre and an Fe+ centre. E(F) 
represents the F-centre ground-state energy calculated at the Fe+-centre ground-state lattice 
relaxation in accordance with the Franck-Condon principle, because the binding energy 
here is referred to optical excitation. 

The binding energies of three crystals (table 4) are calculated using the large basis 
described above. A few conclusions can be drawn: (i) Positron binding energies to the F 
centre range from 1 to 2 eV for the alkali halides we studied, and, as the size of cation 
increases, binding gets deeper, which agrees generally with previous calculations. (ii) The 
binding mainly comes from electron-positron correlation. Adding two sets of off-centre 
bases lowers the ground-state energy by about 1 eV. 

Positron binding energies to F centres were estimated before by Berezin [27] and 
Farazdel and Cade [25]. Berezin used the Hulthen potential to calculate the binding energies 
for a few alkali halides and those values he found were 1.4 eV for NaCl, 1.6 eV for 
KCI and 1.7 eV for KBr. The correlation was totally ignored in his calculation. Two 
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Table 4. Calculated Fe+-centre groundstate parameters (at 0 K). D.. represents the nearest- 
neighbour ion displacemeno. Et and Eb represent respectively the equilibrium energy and 
binding-energy, calculated with the large basis (see the text). 9) and r represent the lifetimes 
calculated with a single optimized m-mke basis and the large basis. respectively. r. refers to 
the lifetimes calculated with the care effect counted. zmp is the observed lifetimes. 

NaF NaCl KCI 

D.. (A) 0.34 0.29 0.29 
E@') (eV) 8.23 4.80 4.52 
E,(Fe+) (eV) 7.04 3.60 2.82 
Eb (ev) 1.19 1.20 1.70 
m (m) 3.31 4.68 4.65 
r (ns) 1.90 2.55 . 2.59 

(ns) 1.60 2.20 2.40 
rcip (ns) 1.10 1161 1.20 [I61 

model potentials (hydrogenic potential and Krumhansl-Schwartz potential) were used by 
Farazdel and Cade, and three types of trial wavefunctions (uncorrelated, partly correlated 
and correlated) were applied to calculate the binding energies. Their binding energies vary 
considerably depending on the potential and trial wavefunction used. For both potentials 
the correlated wavefunction gave binding energies 1-2 eV larger than the uncorrelated 
wavefunction. The model potentials made a large difference. In terms of uncorrelated 
wavefunction, the hydrogenic potentia1 led to quite deep binding energies, varying about 
1-2 eV for different crystals, while the Krnmhansl-Schwartz potential did not show strong 
sign of binding. 

The binding energies calculated by our model agree with those obtained by both Farazdel 
and Berezin in the sense that their values are in about the same range as ours. As a matter of 
fact, our values are closer to what Farazdel et al obtained by using the Krumhansl-Schwartz 
potential with correlated wavefunction. Berezin's treatment is relatively crude owing to 
the lack of correlation effect. On the other hand, none of the above work incorporated 
lattice relaxation explicitly; instead the lattice environment was represented by a model 
potential. So far there have been no experimental results reported for binding energy. Our 
work is the only one involving detailed lattice environment and both correlation effect and 
lattice relaxation effects can be estimated. In terms of electron description, our Gaussian 
wavefunction is not as good as the Slater wavefunction, but the linear combinationof many 
Gaussians seems to make up for this shortcoming. The self-consistent treatment of defect 
and lattice provides information about the ionic relaxation around the defect simultaneously. 
Both Fe+ centre and F centre are treated by exactly the same approach. The excited state 
of the Fe+ centre is examined for (ls2p) configuration, i.e. the electron is in Is ground 
state and the positron is in the excited p-like state. The calculation is tiied only for NaCl 
and the energy obtained is 7.1 eV. The F-centre ground-state energy under the same lattice 
distortion comes out to be 5.12 eV (ionized state). Obviously the binding is impossible, or 
we can say the ground state is the only possible binding state for Fe+ centres. 

3.3.2. Positronium lifetime and angular correlation. Similar to the above energy calculation, 
the results are obtained for both the single on-centre basis and the large basis including two 
sets of off-centre Gaussians. We also want to examine the contributions from core electrons 
to the lifetime. 

Our calculated lifetime values for NaCl and KCI are about twice as long as those 
observed. Comparing calculated lifetimes with core effect (rc) to the ones without core 
effect (ro for single optimized basis and r for large basis), we see that taking core orbitals 
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into account does not improve the lifetime appreciably. But introducing the off-centre type 
basis (shown as r )  does improve the lifetime significantly. When compared to the lifetimes 
of free and self-trapped Ps presented above, the relative agreement with observed data is 
better. This is probably due to the use of a very large basis in the present case as well as 
to the fact that Fei is well localized on the anion vacancy. 

Angular correlation curves (ACC) of Ps annihilation are one of the most frequently 
reported data. The calculated ACC for NaF, NaCl and KCI are drawn in figures 3, 4 and 
5 respectively. The experimental measurements for NaCl and KCI [ZS] are also shown 
in the figures. A comparison for NaCl can be made with the similar graph in Farde l ' s  
paper [25]. In figures 4 and 5, two calculated curves are displayed in each figure. One 
is calculated with the single on-centre basis, and the other with the laige basis already 
described above. Generally, both agree with experiment fairly well. But the large basis 
improves the calculation very appreciably. Those figures clearly show the effect of better 
basis. 

Angular Correlation Curve Angular Colrelation Curve 

0 1 2 3 4 5 . 5  
e (mad) 

Figure 4. Angular correlation curves N ( 0 )  for two- 
photon annihilation of positrons from F centres in NaCI. 
The full cume represents the theoretical calculation 
using the large basis set, and the broken curve is that 
using a single optimized on-centre basis. Squares am 
experimental data from Herlach and Oggenfnss 1281. 
Normalization of N ( 0 )  is made such that N ( 0 )  = 10 at 
e = 0. 

L . I  

Figure S. Angular correlation curves N ( 9 )  for two- 
photon annihilation of positrons f" F centres in KCI. 
The full c m e  represents the theoretical calculations 
using the large basis set and the broken curve is that 
using a single optimized on-centre basis. Squares are 
experimental data from Hedach and Oggenfuss [al. 
Normalization of N ( 0 )  is made such that N ( 0 )  = 10 at 
e = o .  

Now we examine the calculations made by Farazdel and Cade. Their figure of ACC 
shows that the best fit comes from the uncorrelated wavefunction with hydrogen potential. 
Even though the partly correlated and correlated wavefunctions give better energy and 
lifetime, the deviations for ACC are quite large. The improvements of energy and ACC go 
in opposite directions. It is not clear why this is so. Our calculation shows that the large 
basis yields better results not only for ACC but also for energy and lifetime. 

It is believed that the centreof-mass motion of the Ps pair has an energy distribution 
that follows the Boltzmann distribution: the distribution of momentum is proportional to 
exp(-p2/2MkT). On the other hand, as our basis contains a centre of mass of Ps with a 
Gaussian wavefunction exp(-aR2), its Fourier transform results in a similar form. The use 
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of the Gaussian basis provides an unexpected advantage in representing the distribution of 
momentum p at thermal equilibrium. The best ACC for Fe+ centre are obtained from OUT 
method. 

4. Summary 

In this work, we have studied the structure of several defects involving the positronium in 
alkali halide crystals. The systematic investigations resulted in overall features of various 
systems that are found to be in reasonable agreement with experiment, except the lietimes 
in the cases of self-trapped and delocalized Bloch-like Ps states. 

The advantage of our method is the ease with which it can be applied under the same 
approximations to many defect systems such as the F centre, Fe+ centre, localized Ps and 
free Ps. Those positronium systems associated with a defect-free lattice have been found to 
be more interesting in both experiment and theory. We found both the free and self-trapped 
Ps to be very close in energy. The free state is a truly Bloch-like state and exhibits the 
crystallographic effect with missing peaks in the ACC. The self-trapped state is found to be 
fairly extended over many unit cells, as described by the envelope function we introduced. 

All in all, we have developed a successful method along the lines of the extended- 
ion approach for dealing with those complicated defect systems possessing more than one 
‘electron’. Not only has a considerable amount of results associated with various positron 
or positronium systems been achieved, hut several important features of observations are 
satisfactorily explained. 
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Appendix 

Basically, the defect systems under study are composed of two particles. In the approach 
we have developed, the two-particle basis is represented by a product wavefunction of two 
single-particle Gaussian basis functions. In the following, we present the relation between 
our basis and a more conventional basis in which the centreof-mass and relative motions 
are explicitly described. We use an arbitrary two-particle product Gaussian basis of the 
form, centred at A and B (normalization constants are not considered): 

We transform the coordinates into a CM coordinate system by defining 

Then (AI) can be written as 
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where 
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G(R) = exp(-[ap/(or + B)IIZR- A - B I ~ )  

G(r) = exp{-(or + p)I$r - [orA - BB + (B - or)RI/(a + 8)l21. 

(A41 

(A51 

Here, one of the properties of Gaussian functions has been used, in which a product of two 
Gaussians can be contracted into a new Gaussian with a new decay factor and at, a new 
position. The basis decouples partly into the product of CM and relative motions. This can 
be seen more transparently when the Gaussians have a common decay factor (or = B ) .  and 
their positions are chosen in such a way that A = B or A = -B. Then (A3) becomes 
either of the following forms: 

G(R)G(T) = exp(-2orIR- AIZ)exp(-+Irl2) (A6) 

G(R)G(r) = exp(-2alRl2) exp(-;alr - 2AIZ). (A7) 

As was discussed in section 3.3 and in I, the basis we employ has some degree of built-in 
correlation effect between the two particles. 

Note added in prooJ Dr T Hyodo has pointed out to the author (KSS) that considention of the 'pick off process 
by the surrounding atoms could shorten the calculated lifetimes. We thank him for this remark. 
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